基于 TensorFlow 的实体及关系抽取,2019语言与智能技术竞赛信息抽取(实体与关系抽取)任务解决方案。
给定schema约束集合及句子sent,其中schema定义了关系P以及其对应的主体S和客体O的类别,例如(S_TYPE:人物,P:妻子,O_TYPE:人物)、(S_TYPE:公司,P:创始人,O_TYPE:人物)等。任务要求参评系统自动地对句子进行分析,输出句子中所有满足schema约束的SPO三元组知识Triples=[(S1, P1, O1), (S2, P2, O2)…]。输入/输出: (1) 输入:schema约束集合及句子sent (2) 输出:句子sent中包含的符合给定schema约束的三元组知识Triples
例子 输入句子: "text": "《古世》是连载于云中书城的网络小说,作者是未弱"
输出三元组: "spo_list": [{"predicate": "作者", "object_type": "人物", "subject_type": "图书作品", "object": "未弱", "subject": "古世"}, {"predicate": "连载网站", "object_type": "网站", "subject_type": "网络小说", "object": "云中书城", "subject": "古世"}]}
数据简介
本次竞赛使用的SKE数据集是业界规模最大的基于schema的中文信息抽取数据集,其包含超过43万三元组数据、21万中文句子及50个已定义好的schema,表1中展示了SKE数据集中包含的50个schema及对应的例子。数据集中的句子来自百度百科和百度信息流文本。数据集划分为17万训练集,2万验证集和2万测试集。其中训练集和验证集用于训练,可供自由下载。
项目代码和数据集 获取:
关注微信公众号 datayx 然后回复 文本标注 即可获取。
AI项目体验地址 https://loveai.tech
“信息抽取”任务冠军队伍报告
数据科学与编程 » 实体-关系信息抽取上线使用F1值87.1% (附数据集)