cs.LG 方向,今日共计100篇
【1】 Report of the Workshop on Program Synthesis for Scientific Computing
作者:Hal Finkel,Ignacio Laguna
备注:29 pages, workshop website: this https URL
链接:https://arxiv.org/abs/2102.01687
【2】 Keep the Gradients Flowing: Using Gradient Flow to Study Sparse Network Optimization
作者:Kale-ab Tessera,Sara Hooker,Benjamin Rosman
机构:University of the Witwatersrand, Google Brain
链接:https://arxiv.org/abs/2102.01670
【3】 Online Learning with Simple Predictors and a Combinatorial Characterization of Minimax in 0/1 Games
标题:具有简单预测因子的在线学习与0/1对策中极大极小的组合刻画
作者:Steve Hanneke,Roi Livni,Shay Moran
机构:Toyota Technological Institute at Chicago, Tel Aviv University, Technion
链接:https://arxiv.org/abs/2102.01646
【4】 OPAM: Online Purchasing-behavior Analysis using Machine learning
作者:Sohini Roychowdhury,Ebrahim Alareqi,Wenxi Li
机构:Director, ML Curriculum, Data Scientist, Product Labs Graduate Student Researcher, Data-X Lab, FourthBrain.ai, CA-, USA, Volvo Cars Technology, CA, University of California, Berkeley
备注:8 pages, 8 figures, 5 tables
链接:https://arxiv.org/abs/2102.01625
【5】 Strongly Adaptive OCO with Memory
作者:Zhiyu Zhang,Ashok Cutkosky,Ioannis Ch. Paschalidis
机构:Boston University, yannispobu. edu
链接:https://arxiv.org/abs/2102.01623
【6】 Depth separation beyond radial functions
作者:Luca Venturi,Samy Jelassi,Tristan Ozuch,Joan Bruna
机构:Courant Institute of Mathematical Sciences, New York University, New York, Princeton University, Princeton, Massachusetts Institute of Technology, Cambridge, Center for Data Science, New York University, New York
链接:https://arxiv.org/abs/2102.01621
【7】 Towards Multi-agent Reinforcement Learning for Wireless Network Protocol Synthesis
作者:Hrishikesh Dutta,Subir Biswas
机构:Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
备注:Accepted and presented in 13th International Conference on COMmunication Systems & NETworkS (COMSNETS) 2021, Bangalore. Proceedings not published yet
链接:https://arxiv.org/abs/2102.01611
【8】 Symplectic Gaussian Process Dynamics
作者:Katharina Ensinger,Friedrich Solowjow,Michael Tiemann,Sebastian Trimpe
机构:Bosch Center for, Max Planck Institute, Institute for Data Science, Artificial Intelligence, for Intelligent Systems, Artificial Intelligence, in Mechanical Engineering, Stuttgart, Germany, Renningen, Germany RWTH Aachen University, Aachen, Germany
链接:https://arxiv.org/abs/2102.01606
【9】 FEDZIP: A Compression Framework for Communication-Efficient Federated Learning
标题:FEDZIP:一种通信高效的联邦学习压缩框架
作者:Amirhossein Malekijoo,Mohammad Javad Fadaeieslam,Hanieh Malekijou,Morteza Homayounfar,Farshid Alizadeh-Shabdiz,Reza Rawassizadeh
机构:Semnan University, Semnan, Iran, The Iran University of Science and Technology, Amirkabir University of Technology, Tehran, Iran, Tehran,Iran, Reza rawassizadeh, Boston University, Boston, MA, USA, February
链接:https://arxiv.org/abs/2102.01593
【10】 The Min-Max Complexity of Distributed Stochastic Convex Optimization with Intermittent Communication
标题:间歇通信分布式随机凸优化问题的最小-最大复杂度
作者:Blake Woodworth,Brian Bullins,Ohad Shamir,Nathan Srebro
机构:Toyota Technological Toyota Technological Weizmann Institute Toyota Technological, Institute at Chicago Institute at Chicago, of Science, weizmann. ac.il
链接:https://arxiv.org/abs/2102.01583
作者:Mats L. Richter,Johan Byttner,Ulf Krumnack,Ludwdig Schallner,Justin Shenk
链接:https://arxiv.org/abs/2102.01582
【12】 Super-klust: Another Way of Piecewise Linear Classification
标题:SUPER-KUST:分段线性分类的另一种方法
作者:Rahman Salim Zengin,Volkan Sezer
机构:CAutonomous Mobility Group, Electrical and Electronics Engineering Faculty, Istanbul Technical University, Istanbul, Turkey
备注:5 pages, 10 figures, “for the source code, see this https URL”
链接:https://arxiv.org/abs/2102.01571
【13】 Symmetric Boolean Factor Analysis with Applications to InstaHide
标题:对称布尔因子分析及其在InstaHide中的应用
作者:Sitan Chen,Zhao Song,Runzhou Tao,Ruizhe Zhang
链接:https://arxiv.org/abs/2102.01570
【14】 A Lyapunov Theory for Finite-Sample Guarantees of Asynchronous Q-Learning and TD-Learning Variants
标题:异步Q-学习和TD-学习变体的有限样本保证的Lyapunov理论
作者:Zaiwei Chen,Siva Theja Maguluri,Sanjay Shakkottai,Karthikeyan Shanmugam
机构:Georgia Institute of Technology Georgia Institute of Technology, The University of Texas at Austin, IBM Research NY, sanjay. shakkottaiQutexas. edu Karthikeyan. Shanmugam,ibm. com
链接:https://arxiv.org/abs/2102.01567
【15】 Real-time detection of uncalibrated sensors using Neural Networks
作者:Luis J. Muñoz-Molina,Ignacio Cazorla-Piñar,Juan P. Dominguez-Morales,Fernando Perez-Peña
机构:Robotics and Technology of Computers Lab., Universidad de Sevilla, Seville, Universidad de Cadiz, Spain.
链接:https://arxiv.org/abs/2102.01565
【16】 Guidance on the Assurance of Machine Learning in Autonomous Systems (AMLAS)
作者:Richard Hawkins,Colin Paterson,Chiara Picardi,Yan Jia,Radu Calinescu,Ibrahim Habli
机构:Assuring Autonomy International Programme (AAIP), University of York, UK, Version , February
链接:https://arxiv.org/abs/2102.01564
【17】 Metrics and continuity in reinforcement learning
作者:Charline Le Lan,Marc G. Bellemare,Pablo Samuel Castro
机构:University of Oxford,Google Research, Brain Team
链接:https://arxiv.org/abs/2102.01514
【18】 Gaussian Experts Selection using Graphical Models
作者:Hamed Jalali,Martin Pawelczyk,Gjerji Kasneci
机构:University of Tuebingen, gjergji. kasneciQuni-tuebingen.de, February
链接:https://arxiv.org/abs/2102.01496
【19】 Drift Estimation with Graphical Models
作者:Luigi Riso,Marco Guerzoni
机构:University of Turin, DEMS, University of Milan-Bicocca, January
链接:https://arxiv.org/abs/2102.01458
【20】 Predicting the Time Until a Vehicle Changes the Lane Using LSTM-based Recurrent Neural Networks
作者:Florian Wirthmüller,Marvin Klimke,Julian Schlechtriemen,Jochen Hipp,Manfred Reichert
备注:the article has been accepted for publication in IEEE Robotics and Automation Letters (RA-L), 8 pages, 5 figures, 6 tables
链接:https://arxiv.org/abs/2102.01431
【21】 Graph Classification Based on Skeleton and Component Features
作者:Xue Liu,Wei Wei,Xiangnan Feng,Xiaobo Cao,Dan Sun
机构:a Beijing System Design Institute of Electro-Mechanic Engineering, Beijing, China, Beihang University, Beijing, China, Key Laboratory of Mathematics, Informatics and Behavioral Semantics Ministry of Education, China, Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, Peng Cheng Laboratory, Shenzhen, Guangdong, China
备注:25 pages, 7 figures, 2 tables
链接:https://arxiv.org/abs/2102.01428
【22】 AURSAD: Universal Robot Screwdriving Anomaly Detection Dataset
标题:AURSAD:通用机器人螺丝传动异常检测数据集
作者:Błażej Leporowski,Daniella Tola,Casper Hansen,Alexandros Iosifidis
机构:Aarhus University, Technicon ApS, February
链接:https://arxiv.org/abs/2102.01409
【23】 Unassisted Noise Reduction of Chemical Reaction Data Sets
作者:Alessandra Toniato,Philippe Schwaller,Antonio Cardinale,Joppe Geluykens,Teodoro Laino
机构:IBM Research Europe-Zurich-, Rischlikon, Switzerland, University of Bern, Bern, Switzerland, University of Pisa, Pisa, Italy
链接:https://arxiv.org/abs/2102.01399
【24】 It’s always personal: Using Early Exits for Efficient On-Device CNN Personalisation
标题:它总是个人化的:使用提前退出实现高效的设备上CNN个性化
作者:Ilias Leontiadis,Stefanos Laskaridis,Stylianos I. Venieris,Nicholas D. Lane
机构:Samsung AI Center, Cambridge University of Cambridge, Indicates equal contribution., -Personalised Training
备注:Accepted at the 22nd International Workshop on Mobile Computing Systems and Applications (HotMobile), 2021
链接:https://arxiv.org/abs/2102.01393
【25】 Bayesian Neural Networks for Virtual Flow Metering: An Empirical Study
作者:Bjarne Grimstad,Mathilde Hotvedt,Anders T. Sandnes,Odd Kolbjørnsen,Lars S. Imsland
机构:Kolbjornsen, Lars. Imsland, Trondheim, Norway, University of Oslo, Oslo, Norway
链接:https://arxiv.org/abs/2102.01391
【26】 AutoFreeze: Automatically Freezing Model Blocks to Accelerate Fine-tuning
作者:Yuhan Liu,Saurabh Agarwal,Shivaram Venkataraman
机构:University of Wisconsin-Madison
链接:https://arxiv.org/abs/2102.01386
【27】 Stability-Constrained Markov Decision Processes Using MPC
作者:Mario Zanon,Sébastien Gros,Michele Palladino
机构:a IMT School for Advanced Studies Lucca, Piazza San Francesco , Lucca, Italy, NTNU, Gloshaugen, Trondheim, Norway, Gran Sasso Science Institute-GSSI, via Michele Jacobucci , L’Aquila, Italy
链接:https://arxiv.org/abs/2102.01383
【28】 Federated Learning in Smart Cities: A Comprehensive Survey
作者:Zhaohua Zheng,Yize Zhou,Yilong Sun,Zhang Wang,Boyi Liu,Keqiu Li
机构:Tianjin Univeristy, China; ,Hainan Univeristy, China; ,University of Macau, ARTICLE HISTORY, Compiled February
链接:https://arxiv.org/abs/2102.01375
【29】 Leveraging IoT and Weather Conditions to Estimate the Riders Waiting for the Bus Transit on Campus
作者:Ismail Arai,Ahmed Elnoshokaty,Samy El-Tawab
机构:Information Initiative Center, Computer Information Systems College of Integrated Science and Engineering, Nara Institute of Science and Technology Northern Michigan University, James Madison University, Nara, Japan, Michigan, USA, Virginia, USA
备注:6 pages, 10figures, PerIoT 2021
链接:https://arxiv.org/abs/2102.01364
【30】 Recent Advances in Adversarial Training for Adversarial Robustness
作者:Tao Bai,Jinqi Luo,Jun Zhao,Bihan Wen
机构:Nanyang Technological University, Singapore
链接:https://arxiv.org/abs/2102.01356
【31】 Mining Feature Relationships in Data
机构:Victoria University of Wellington, PO Box , Wellington , New Zealand
备注:16 pages, accepted in EuroGP ’21
链接:https://arxiv.org/abs/2102.01355
【32】 Graph Coarsening with Neural Networks
作者:Chen Cai,Dingkang Wang,Yusu Wang
备注:International Conference on Learning Representations 2021
链接:https://arxiv.org/abs/2102.01350
【33】 Fast Exploration of Weight Sharing Opportunities for CNN Compression
作者:Etienne Dupuis,David Novo,Ian O’Connor,Alberto Bosio
机构:Ecole Centrale de lyon, LIRMM, Universite de Montpellier, Institut des Nanotechnologies de lyon, and CNRS, Lyon, France, Montpellier, France
备注:Presented at DATE Friday Workshop on System-level Design Methods for Deep Learning on Heterogeneous Architectures (SLOHA 2021) (arXiv:2102.00818)
链接:https://arxiv.org/abs/2102.01345
【34】 Bit Error Tolerance Metrics for Binarized Neural Networks
作者:Sebastian Buschjäger,Jian-Jia Chen,Kuan-Hsun Chen,Mario Günzel,Katharina Morik,Rodion Novkin,Lukas Pfahler,Mikail Yayla
机构:These authors contributed equally, Technical University of Dortmund
备注:Presented at DATE Friday Workshop on System-level Design Methods for Deep Learning on Heterogeneous Architectures (SLOHA 2021) (arXiv:2102.00818)
链接:https://arxiv.org/abs/2102.01344
【35】 Benchmarking Quantized Neural Networks on FPGAs with FINN
作者:Quentin Ducasse,Pascal Cotret,Loïc Lagadec,Robert Stewart
机构:Lab-STICC, ENSTA Bretagne, Heriot-Watt University, Brest, France, Edinburgh, United Kingdom
备注:Presented at DATE Friday Workshop on System-level Design Methods for Deep Learning on Heterogeneous Architectures (SLOHA 2021) (arXiv:2102.00818)
链接:https://arxiv.org/abs/2102.01341
【36】 pseudo-Bayesian Neural Networks for detecting Out of Distribution Inputs
作者:Gagandeep Singh,Deepak Mishra
机构:Indian Institute of Technology, Jodhpur Indian Institute of Technology, Jodhpur, Rajasthan, India
链接:https://arxiv.org/abs/2102.01336
【37】 Anomaly Detection of Time Series with Smoothness-Inducing Sequential Variational Auto-Encoder
标题:基于平滑度诱导的序贯变分自动编码器的时间序列异常检测
作者:Longyuan Li,Junchi Yan,Haiyang Wang,Yaohui Jin
备注:Accepted by IEEE Transactions on Neural Network and Learning System (TNNLS), 2020
链接:https://arxiv.org/abs/2102.01331
【38】 Reinforcement Learning with Probabilistic Boolean Network Models of Smart Grid Devices
作者:Pedro J. Rivera Torres,Carlos Gershenson García,Samir Kanaan Izquierdo
机构: Centro de Ciencias de la Complejidad (C,), Universidad Nacional Autonoma de Mexico, Circuito Centro, Cultural SN, Cd. Universitaria, Delegacion Coyoacan, Ciudad de Mexico, Mexico., Bioinformatics and Biomedical Signals Laboratory, Centre de Recerca en Enginyeria Biomedica,Universitat, Politecnica de Catalunya, Facultat de Matematiques i Estadistica, Edifici U, CPau Gargallo, Barce-, lona, spain., Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de, Mexico, Ciudad de Mexico, Mexico., Lakeside Labs GmbH, Klagenfurt am, Wortherses, Austria., Institut de Recerca Sant Joan de Deu Esplugues de Llobregat, Barcelona, Spain
链接:https://arxiv.org/abs/2102.01297
【39】 Scaling Laws for Transfer
作者:Danny Hernandez,Jared Kaplan,Tom Henighan,Sam McCandlish
链接:https://arxiv.org/abs/2102.01293
【40】 Predicting student performance using data from an auto-grading system
作者:Huanyi Chen,Paul A. S. Ward
机构:Paul A.S. Ward, University of Waterloo, Waterloo, ON, Canada
链接:https://arxiv.org/abs/2102.01270
【41】 Evaluating the Interpretability of Generative Models by Interactive Reconstruction
作者:Andrew Slavin Ross,Nina Chen,Elisa Zhao Hang,Elena L. Glassman,Finale Doshi-Velez
机构:Harvard University, Cambridge, MA, USA
备注:CHI 2021 accepted paper
链接:https://arxiv.org/abs/2102.01264
【42】 TinyML for Ubiquitous Edge AI
机构:in this report are those of The MITRE, Corporation and should not be construed as an, official government position, policy, or, decision, unless designated by other, documentation., September , C, The MITRE Corporation.
链接:https://arxiv.org/abs/2102.01255
【43】 Fast Training of Provably Robust Neural Networks by SingleProp
标题:用SingleProp实现可证明鲁棒神经网络的快速训练
作者:Akhilan Boopathy,Tsui-Wei Weng,Sijia Liu,Pin-Yu Chen,Gaoyuan Zhang,Luca Daniel
机构: Massachusetts Institute of Technology, MIT-IBM Watson AI Lab, IBM Research
备注:Published at AAAI 2021
链接:https://arxiv.org/abs/2102.01208
【44】 GraphDF: A Discrete Flow Model for Molecular Graph Generation
标题:GraphDF:一种用于分子图生成的离散流模型
作者:Youzhi Luo,Keqiang Yan,Shuiwang Ji
链接:https://arxiv.org/abs/2102.01189
【45】 Multi-modal Ensemble Models for Predicting Video Memorability
作者:Tony Zhao,Irving Fang,Jeffrey Kim,Gerald Friedland
机构:University of California, Berkeley
链接:https://arxiv.org/abs/2102.01173
【46】 Reinforcement Learning for Decision-Making and Control in Power Systems: Tutorial, Review, and Vision
标题:强化学习在电力系统决策与控制中的应用:教程、回顾与展望
作者:Xin Chen,Guannan Qu,Yujie Tang,Steven Low,Na Li
链接:https://arxiv.org/abs/2102.01168
【47】 System-reliability based multi-ensemble of GAN and one-class joint Gaussian distributions for unsupervised real-time structural health monitoring
标题:基于系统可靠性的GaN多集成和一类联合高斯分布无监督实时结构健康监测
作者:Mohammad Hesam Soleimani-Babakamali,Reza Sepasdar,Kourosh Nasrollahzadeh,Rodrigo Sarlo
机构:Virginia Tech University, Blacksburg, VA, USA, K. N. Toosi University of Technology, Tehran, Iran
链接:https://arxiv.org/abs/2102.01158
【48】 Real-time Prediction for Mechanical Ventilation in COVID-19 Patients using A Multi-task Gaussian Process Multi-objective Self-attention Network
标题:基于多任务高斯过程多目标自关注网络的冠状病毒患者机械通气实时预测
作者:Kai Zhang,Siddharth Karanth,Bela Patel,Robert Murphy,Xiaoqian Jiang
机构:University of Texas Health Science Center at Houston, Houston, TX , USA, Houston, Houston, TX ,USA
链接:https://arxiv.org/abs/2102.01147
【49】 Comparing hundreds of machine learning classifiers and discrete choice models in predicting travel behavior: an empirical benchmark
标题:比较数百种机器学习分类器和离散选择模型预测出行行为的经验基准
作者:Shenhao Wang,Baichuan Mo,Stephane Hess,Jinhua Zhao
机构:-Choice Modeling Centre Institute for Transport Studies, University of Leeds, – Media Lab, Massachusetts Institute of Technology, January
链接:https://arxiv.org/abs/2102.01130
【50】 SGD Generalizes Better Than GD (And Regularization Doesn’t Help)
作者:Idan Amir,Tomer Koren,Roi Livni
链接:https://arxiv.org/abs/2102.01117
【51】 Exact Langevin Dynamics with Stochastic Gradients
作者:Adrià Garriga-Alonso,Vincent Fortuin
机构:ETH Zurich, Switzerland
备注:13 pages, 2 figures. Accepted to the 3rd Symposium on Advances in Approximate Bayesian Inference (AABI 2021)
链接:https://arxiv.org/abs/2102.01691
【52】 Agent Incentives: A Causal Perspective
作者:Tom Everitt,Ryan Carey,Eric Langlois,Pedro A Ortega,Shane Legg
机构:I DeepMind,University of Oxford,University of Toronto,Vector Institute, Equal Contribution
备注:In Proceedings of the AAAI 2021 Conference. Supersedes arXiv:1902.09980, arXiv:2001.07118
链接:https://arxiv.org/abs/2102.01685
【53】 Learning domain-agnostic visual representation for computational pathology using medically-irrelevant style transfer augmentation
标题:使用医学无关风格转移增强学习用于计算病理学的领域不可知的视觉表示
作者:Rikiya Yamashita,Jin Long,Snikitha Banda,Jeanne Shen,Daniel L. Rubin
链接:https://arxiv.org/abs/2102.01678
【54】 The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics
作者:Sebastian Gehrmann,Tosin Adewumi,Karmanya Aggarwal,Pawan Sasanka Ammanamanchi,Aremu Anuoluwapo,Antoine Bosselut,Khyathi Raghavi Chandu,Miruna Clinciu,Dipanjan Das,Kaustubh D. Dhole,Wanyu Du,Esin Durmus,Ondřej Dušek,Chris Emezue,Varun Gangal,Cristina Garbacea,Tatsunori Hashimoto,Yufang Hou,Yacine Jernite,Harsh Jhamtani,Yangfeng Ji,Shailza Jolly,Dhruv Kumar,Faisal Ladhak,Aman Madaan,Mounica Maddela,Khyati Mahajan,Saad Mahamood,Bodhisattwa Prasad Majumder,Pedro Henrique Martins,Angelina McMillan-Major,Simon Mille,Emiel van Miltenburg,Moin Nadeem,Shashi Narayan,Vitaly Nikolaev,Rubungo Andre Niyongabo,Salomey Osei,Ankur Parikh,Laura Perez-Beltrachini,Niranjan Ramesh Rao,Vikas Raunak,Juan Diego Rodriguez,Sashank Santhanam,João Sedoc,Thibault Sellam,Samira Shaikh,Anastasia Shimorina,Marco Antonio Sobrevilla Cabezudo,Hendrik Strobelt,Nishant Subramani,Wei Xu,Diyi Yang,Akhila Yerukola,Jiawei Zhou
机构:Pedro Henrique Martin, Amelia&D, New York, Carnegie Mellon University, Charles University, Prague, Columbia University, ‘Cornell, University, ‘DFKI, Germany Edinburgh Centre for Robotics, Georgia Tech, Google Research, Harvard University, Heriot-Watt University, Hugging Face,IBM Research,IT Delhi,JIT Hyderabad,Instituto de Telecomunicacoes, Intelligent Systems Lab, Intel, Johns-Hopkins University, Kwame Nkrumah University of Science and Technology, Lulea University of Technology, Masakhane Africa,Massachusetts Institute of Technology,Microsoft,National, Institute of Technology Karnataka India, New York University,Pompeu Fabra University,Samsung Research,Stanford, University, Technical University of Kaiserslautern,Technical University Munich, Tilburg University, trivago, Universite de Lorraine,University of North Carolina Charlotte,University of Edinburgh,University of Electronic, Science and Technology of China, University of California San Diego,University of Lagos,University of Michigan Ann
链接:https://arxiv.org/abs/2102.01672
【55】 Capacity and quantum geometry of parametrized quantum circuits
作者:Tobias Haug,Kishor Bharti,M. S. Kim
机构:QOLS, Blackett Laboratory, Imperial College London SW,AZ, UK, Centre for Quantum Technologies, National University of Singapore , Singapore
备注:10 pages, 9 figures. Code available at this https URL
链接:https://arxiv.org/abs/2102.01659
【56】 Heterogeneous Graph based Deep Learning for Biomedical Network Link Prediction
标题:基于异构图的深度学习在生物医学网络链路预测中的应用
作者:Jinjiang Guo,Jie Li,Dawei Leng,Lurong Pan
机构:AIDD, Data Science, Global Health Drug Discovery Institute, Beijing, China
链接:https://arxiv.org/abs/2102.01649
【57】 A Novel Use of Discrete Wavelet Transform Features in the Prediction of Epileptic Seizures from EEG Data
标题:离散小波变换特征在从脑电数据预测癫痫发作中的新应用
作者:Cyrille Feudjio,Victoire Djimna Noyum,Younous Perieukeu Mofendjou,Rockefeller,Ernest Fokoué
机构:Ernest Fokouec,, African Institute for Mathematical Sciences Crystal Gardens, Limbe Cameroon, Stellenbosch University, South Africa, Rochester Institute of Technology, Rochester, NY , ARTICLE INFO
链接:https://arxiv.org/abs/2102.01647
【58】 Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search
标题:通过剪辑引导的生成性潜在空间搜索从字幕生成图像,反之亦然
作者:Federico A. Galatolo,Mario G. C. A. Cimino,Gigliola Vaglini
机构:University of Pisa, Pisa, Italy
链接:https://arxiv.org/abs/2102.01645
【59】 U-LanD: Uncertainty-Driven Video Landmark Detection
作者:Mohammad H. Jafari,Christina Luong,Michael Tsang,Ang Nan Gu,Nathan Van Woudenberg,Robert Rohling,Teresa Tsang,Purang Abolmaesumi
机构:joint detection of key frames and landmarks in videos. We, tackle a specifically challenging problem, where training, Lower, Higher, labels are noisy and highly sparse. U-LanD builds upon, a pivotal observation: a deep Bayesian landmark detector, Prediction Prediction Prediction, solely trained on key video frames has significantly lower, Confidence Confidence Confidence, in videos. We use this observation as an unsupervised, signal to automatically recognize key frames on which we, detect landmarks. As a test-bed for our framework, we use, ultrasound imaging videos of the heart, where sparse and, noisy clinical labels are only available for a single frame in, that U-LanD can exceedingly outperform the state-of-the-art, Non-key Frames Non-key, non-Bayesian counterpart by a noticeable absolute margin, of ,% in R, score, with almost no overhead imposed on the, .-, Time, model size. Our approach is generic and can be potentially, applied to other challenging data with noisy and sparse, Index Terms-Video landmark detection, uncertainty es-
链接:https://arxiv.org/abs/2102.01586
【60】 Approximately Solving Mean Field Games via Entropy-Regularized Deep Reinforcement Learning
机构:Technische Universitat Darmstadt, heinz. koepplObcs. tu-darmstadt.de
备注:Accepted to the 24th International Conference on Artificial Intelligence and Statistics (AISTATS 2021)
链接:https://arxiv.org/abs/2102.01585
【61】 Policy Analysis using Synthetic Controls in Continuous-Time
作者:Alexis Bellot,Mihaela van der Schaar
机构:University of Cambridge,The Alan Turing Institute, University of California Los Angeles, February
链接:https://arxiv.org/abs/2102.01577
【62】 Medical Datasets Collections for Artificial Intelligence-based Medical Image Analysis
标题:用于基于人工智能的医学图像分析的医学数据集集合
链接:https://arxiv.org/abs/2102.01549
【63】 Predicting Propensity to Vote with Machine Learning
作者:Rebecca D. pollard,Sara M. Pollard,Scott Streit
链接:https://arxiv.org/abs/2102.01535
【64】 Transfer Learning in Magnetic Resonance Brain Imaging: a Systematic Review
作者:Juan Miguel Valverde,Vandad Imani,Ali Abdollahzadeh,Riccardo De Feo,Mithilesh Prakash,Robert Ciszek,Jussi Tohka
机构: A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland, Kuopio, Finland;, t The order of these authors was randomized, Version February , submitted to J. Imaging
链接:https://arxiv.org/abs/2102.01530
【65】 Robust Attack Detection Approach for IIoT Using Ensemble Classifier
作者:V. Priya,I. Sumaiya Thaseen,Thippa Reddy Gadekallu,Mohamed K. Aboudaif,Emad Abouel Nasr
机构:Abouel Nasr, Vellore Institute of Technology, Vellore, India, Advanced Manufacturing Institute, King Saud University, Riyadh, Saudi Arabia, College of Engineering, King Saud University, Riyadh, Saudi Arabia, Received: , August ,; Accepted: , October
链接:https://arxiv.org/abs/2102.01515
【66】 ADePT: Auto-encoder based Differentially Private Text Transformation
作者:Satyapriya Krishna,Rahul Gupta,Christophe Dupuy
链接:https://arxiv.org/abs/2102.01502
【67】 Analyzing dynamical disorder for charge transport in organic semiconductors via machine learning
标题:用机器学习分析有机半导体中电荷输运的动力学无序
作者:Patrick Reiser,Manuel Konrad,Artem Fediai,Salvador Léon,Wolfgang Wenzel,Pascal Friederich
机构:Institute of Nanotechnology, Karlsruhe Institute of Technology(KIT), Hermann-von-Helmholtz-Platz , Eggenstein-Leopoldshafen, Germany, Institute of Theoretical Informatics, Karlsruhe Institute of Technology(KT),Am, Fasanengarten , Karlsruhe, Germany, Universidad Politecnica, de Madrid, C Jose Gutierrez Abascal, Madrid, Spain
链接:https://arxiv.org/abs/2102.01479
【68】 Individual dynamic prediction of clinical endpoint from large dimensional longitudinal biomarker history: a landmark approach
标题:从高维纵向生物标记物历史中动态预测临床终点的个体:一种里程碑式的方法
作者:Anthony Devaux,Robin Genuer,Karine Pérès,Cécile Proust-Lima
机构:INSERM, BPH, U, University of Bordeaux, Bordeaux, France, INRIA Bordeaux Sud-Ouest, Talence, France, February
链接:https://arxiv.org/abs/2102.01466
【69】 Global Earth Magnetic Field Modeling and Forecasting with Spherical Harmonics Decomposition
作者:Panagiotis Tigas,Téo Bloch,Vishal Upendran,Banafsheh Ferdoushi,Mark C. M. Cheung,Siddha Ganju,Ryan M. McGranaghan,Yarin Gal,Asti Bhatt
机构:To Bloch, OATML, University of Reading, IUCAA, University of Oxford, Reading, UK, Pune, India, Oxford, UK, University of New Hampshire, NVIDIA Corporation, Durham, NH, USA, Santa Clara, CA, USA, Oxford,UK, ASTRA LLC, Lockheed Martin, SRI International, Louisville, CO, USA, Advanced Technology Center Menlo Park, CA, USA, Palo Alto, CA, USA
备注:Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada
链接:https://arxiv.org/abs/2102.01447
【70】 Prediction of low-keV monochromatic images from polyenergetic CT scans for improved automatic detection of pulmonary embolism
标题:预测来自多能量CT扫描的低keV单色图像以改进肺栓塞的自动检测
作者:Constantin Seibold,Matthias A. Fink,Charlotte Goos,Hans-Ulrich Kauczor,Heinz-Peter Schlemmer,Rainer Stiefelhagen,Jens Kleesiek
机构: Institute of Anthropomatics Robotics, Karlsruhe Institute of Technology, Germany, University Hospital Heidelberg, Germany, German Cancer Research Center, Heidelberg, Germany, Institute for Al in Medicine(IKIM), University Hospital Essen, Germany
链接:https://arxiv.org/abs/2102.01445
【71】 An Abstraction-based Method to Verify Multi-Agent Deep Reinforcement-Learning Behaviours
标题:一种基于抽象的多Agent深度强化学习行为验证方法
作者:Pierre El Mqirmi,Francesco Belardinelli,Borja G. León
机构:Borja G. Leon, Imperial College London, UK
备注:Extended version of AAMAS publication under the same name
链接:https://arxiv.org/abs/2102.01434
【72】 Robust data-driven discovery of partial differential equations with time-dependent coefficients
机构:Article submitted to journal, The University of Chicago, Chicago, IL , USA, Subject Areas:, Purdue University,West, Applied mathematics, Computational, Lafayette, IN , physics, Computer modelling and, Engineering, Purdue University, West Lafayette, IN, simulation
链接:https://arxiv.org/abs/2102.01432
【73】 Clustering with Penalty for Joint Occurrence of Objects: Computational Aspects
作者:Ondřej Sokol,Vladimír Holý
链接:https://arxiv.org/abs/2102.01424
【74】 aura-net : robust segmentation of phase-contrast microscopy images with few annotations
标题:AURA-Net:少标注相位衬度显微镜图像的鲁棒分割
作者:Ethan Cohen,Virginie Uhlmann
机构: European Bioinformatics Institute, European Molecular Biology Laboratory, Cambridge,UK, Ecole Normale Superieure Paris-Saclay, Paris, France
链接:https://arxiv.org/abs/2102.01389
【75】 Internal Language Model Training for Domain-Adaptive End-to-End Speech Recognition
作者:Zhong Meng,Naoyuki Kanda,Yashesh Gaur,Sarangarajan Parthasarathy,Eric Sun,Liang Lu,Xie Chen,Jinyu Li,Yifan Gong
机构:Microsoft Corporation, Redmond, WA, USA
链接:https://arxiv.org/abs/2102.01380
【76】 Enabling energy efficient machine learning on a Ultra-Low-Power vision sensor for IoT
标题:在物联网超低功耗视觉传感器上实现高能效机器学习
作者:Francesco Paissan,Massimo Gottardi,Elisabetta Farella
机构:E,DA- ICT-irst,IRIS-CMM, Fondazione Bruno Kessler, Trento, Italy
备注:Presented at DATE Friday Workshop on System-level Design Methods for Deep Learning on Heterogeneous Architectures (SLOHA 2021) (arXiv:2102.00818)
链接:https://arxiv.org/abs/2102.01340
【77】 Multimodal Attention Fusion for Target Speaker Extraction
作者:Hiroshi Sato,Tsubasa Ochiai,Keisuke Kinoshita,Marc Delcroix,Tomohiro Nakatani,Shoko Araki
机构:NTT Corporation, Japan
链接:https://arxiv.org/abs/2102.01326
【78】 A Graph-Constrained Changepoint Learning Approach for Automatic QRS-Complex Detection
标题:一种基于图约束的QRS波群自动检测变点学习方法
作者:Atiyeh Fotoohinasab,Toby Hocking,Fatemeh Afghah
备注:accepted in Asilomar 2020 conference
链接:https://arxiv.org/abs/2102.01319
【79】 When Noise meets Chaos: Stochastic Resonance in Neurochaos Learning
作者:Harikrishnan NB,Nithin Nagaraj
机构:Consciousness Studies Programme, National Institute of Advanced Studies, Indian Institute of Science Campus, Bengaluru, India., harikrishnannbOnias.res.in, nithinOnias.res.in, February
备注:12 pages, 19 figures, 1 Table
链接:https://arxiv.org/abs/2102.01316
【80】 Optimal Sequential Detection of Signals with Unknown Appearance and Disappearance Points in Time
作者:Alexander G. Tartakovsky,Nikita R. Berenkov,Alexei E. Kolessa,Igor V. Nikiforov
链接:https://arxiv.org/abs/2102.01310
【81】 Human-Machine Collaborative Video Coding Through Cuboidal Partitioning
作者:Ashek Ahmmed,Manoranjan Paul,Manzur Murshed,David Taubman
机构:Charles Sturt University, Australia., Engineering, and Information Technology, Federation University, Australia., University of New South Wales, Australia.
链接:https://arxiv.org/abs/2102.01307
【82】 Stability and Generalization of the Decentralized Stochastic Gradient Descent
作者:Tao Sun,Dongsheng Li,Bao Wang
机构:College of Computer, National University of Defense Technology, Changsha, Hunan, China., Scientific Computing Imaging Institute, University of Utah, USA.
链接:https://arxiv.org/abs/2102.01302
【83】 A Stochastic Time Series Model for Predicting Financial Trends using NLP
作者:Pratyush Muthukumar,Jie Zhong
机构:University of California, Irvine, California State University, Los Angeles, February
链接:https://arxiv.org/abs/2102.01290
【84】 Detection of Racial Bias from Physiological Responses
作者:Fateme Nikseresht,Runze Yan,Rachel Lew,Yingzheng Liu,Rose M. Sebastian,Afsaneh Doryab
机构:University of Virginia, USA
备注:8 pages, 2 figures, 1 table
链接:https://arxiv.org/abs/2102.01287
【85】 Single Model Deep Learning on Imbalanced Small Datasets for Skin Lesion Classification
标题:用于皮肤病变分类的不平衡小数据集上的单模型深度学习
作者:Peng Yao,Shuwei Shen,Mengjuan Xu,Peng Liu,Fan Zhang,Jinyu Xing,Pengfei Shao,Benjamin Kaffenberger,Ronald X. Xu
机构:Kaffenberger, and Ronald. Xu
链接:https://arxiv.org/abs/2102.01284
【86】 Local Differential Privacy Is Equivalent to Contraction of $E_γ$-Divergence
作者:Shahab Asoodeh,Maryam Aliakbarpour,Flavio P. Calmon
机构:Harvard University, University of Massachusetts Amherst
链接:https://arxiv.org/abs/2102.01258
【87】 PSLA: Improving Audio Event Classification with Pretraining, Sampling, Labeling, and Aggregation
标题:PSLA:通过预训练、采样、标记和聚合改进音频事件分类
作者:Yuan Gong,Yu-An Chung,James Glass
链接:https://arxiv.org/abs/2102.01243
【88】 Time Adaptive Gaussian Model
作者:Federico Cieca,Veronica Tozzo
机构:Robotics, Informatics and System Engineering, Universita degli Studi di Genova, Massachusetts General, Hospital, Harvard Medical School, These authors equally contributed to this paper.
备注:15 pages, 1 figures, supplementary material for conference submission
链接:https://arxiv.org/abs/2102.01238
【89】 Doubly Robust Thompson Sampling for linear payoffs
作者:Wonyoung Kim,Gi-soo Kim,Myunghee Cho Paik
机构:Seoul National University, Seoul, Republic of Korea
备注:18pages including Supplementary Materials
链接:https://arxiv.org/abs/2102.01229
【90】 Inducing Meaningful Units from Character Sequences with Slot Attention
作者:Melika Behjati,James Henderson
机构:Idiap Research InstituteEPFL
链接:https://arxiv.org/abs/2102.01223
【91】 The Gene Mover’s Distance: Single-cell similarity via Optimal Transport
标题:基因移动者的距离:通过最优运输实现单细胞相似性
作者:Riccardo Bellazzi,Andrea Codegoni,Stefano Gualandi,Giovanna Nicora,Eleonora Vercesi
链接:https://arxiv.org/abs/2102.01218
【92】 Causal Inference with the Instrumental Variable Approach and Bayesian Nonparametric Machine Learning
标题:基于工具变量方法和贝叶斯非参数机器学习的因果推理
作者:Robert E. McCulloch,Rodney A. Sparapani,Brent R. Logan,Purushottam W. Laud
链接:https://arxiv.org/abs/2102.01199
【93】 A Statistician Teaches Deep Learning
作者:G. Jogesh Babu,David Banks,Hyunsoon Cho,David Han,Hailin Sang,Shouyi Wang
备注:19 pages. accepted by Journal of Statistical Theory and Practice
链接:https://arxiv.org/abs/2102.01194
【94】 Reconstruction and Segmentation of Parallel MR Data using Image Domain DEEP-SLR
标题:基于图像域Deper-SLR的并行MR数据重建与分割
作者:Aniket Pramanik,Mathews Jacob
机构:The University of Iowa, Iowa City, USA
链接:https://arxiv.org/abs/2102.01172
【95】 Visual Framing of Science Conspiracy Videos: Integrating Machine Learning with Communication Theories to Study the Use of Color and Brightness
标题:科学阴谋视频的视觉组帧:将机器学习与传播学理论相结合研究颜色和亮度的使用
作者:Kaiping Chen,Sang Jung Kim,Sebastian Raschka,Qiantong Gao
机构:University of Wisconsin-Madison, Version: February ,st
链接:https://arxiv.org/abs/2102.01163
【96】 Improving Distantly-Supervised Relation Extraction through BERT-based Label & Instance Embeddings
标题:基于ERT的标签和实例嵌入改进远程监督关系抽取
作者:Despina Christou,Grigorios Tsoumakas
机构:Aristotle University of Thessaloniki, Aristotle University of Thessaloniki, Greece, christoudacsd. auth. gr
链接:https://arxiv.org/abs/2102.01156
【97】 Deep Music Information Dynamics
机构:University of California San Diego
链接:https://arxiv.org/abs/2102.01133
【98】 Diagnosis of Acute Poisoning Using Explainable Artificial Intelligence
作者:Michael Chary,Ed W Boyer,Michele M Burns
机构: Weill Cornell Medical Centre, NY, NY, Brigham and Women’s Hospital, Boston, Massachusetts, Boston Children’s Hospital, Boston, Massachusetts
备注:Parts submitted to HICSS 54
链接:https://arxiv.org/abs/2102.01116
【99】 Machine-Learned Phase Diagrams of Generalized Kitaev Honeycomb Magnets
作者:Nihal Rao,Ke Liu,Marc Machaczek,Lode Pollet
机构: Arnold Sommerfeld Center for Theoretical Physics, University of Munich, Theresienstr , Minchen, Germany, Munich Center for Quantum Science and Technology (MCQST), Schellingstr. , Munchen, Germany, Wilczek Quantum Center, Shanghai Jiao Tong University, Shanghai , China, (Dated: February ,)
备注:11 pages, 12 figures, 1 table
链接:https://arxiv.org/abs/2102.01103
【100】 MalNet: A Large-Scale Cybersecurity Image Database of Malicious Software
标题:MARNET:一个大规模的恶意软件网络安全图像库
作者:Scott Freitas,Rahul Duggal,Duen Horng Chau
链接:https://arxiv.org/abs/2102.01072
本站上原创文章未经作者许可,不得用于商业用途,仅做学习交流使用,本站免责声明。转载请注明出处,否则保留追究法律责任的权利。《署名-非商业性使用-相同方式共享 4.0 国际 (CC BY-NC-SA 4.0)》许可协议授权
数据科学与编程 »
机器学习学术论文参考[02.03]